Wednesday, September 30, 2009

Pegasus XL

The next installment in my "just cut and paste rocket crap from Wikipedia" series is all about a fun little rocket, one of the smallest satellite launchers ever.








"In a Pegasus launch, the carrier aircraft takes off from a runway with support and checkout facilities. Such locations have included Kennedy Space Center / Cape Canaveral Air Force Station, Florida; Vandenberg Air Force Base and Dryden Flight Research Center, California; Wallops Flight Facility, Virginia; Kwajalein Range in the Pacific Ocean, and the Canary Islands in the Atlantic. Orbital offers launches from Alcantara, Brazil, but no known customers have performed any. The capabilities of Alcantara are superfluous to other sites, without being any more convenient.

Upon reaching a predetermined staging time, location, and velocity vector, the aircraft releases the Pegasus. After five seconds of free-fall, the first stage ignites and the vehicle pitches up. The 45-degree delta wing (of carbon composite construction and double-wedge airfoil) aids pitch-up and provides some lift. The tail fins provide steering for first-stage flight, as the Orion 50S motor does not have a thrust-vectoring nozzle.

Approximately 1 minute and 17 seconds later, the Orion 50S motor burns out. The vehicle is at over 200,000 feet in altitude and hypersonic speed. The first stage falls away, taking the wing and tail surfaces, and the second stage ignites. The Orion 50 burns for approximately 1 minute and 18 seconds. Attitude control is by thrust vectoring the Orion 50 motor in two dimensions, pitch and yaw; roll control is provided by the nitrogen thrusters on the third stage.
Midway through second-stage flight, the launcher has reached a near-vacuum altitude. The fairing splits and falls away, uncovering the payload and third stage. Upon burnout of the second stage's motor, the stack coasts until reaching a suitable point in its trajectory, depending on mission. Then the Orion 50 is discarded, and the third stage's Orion 38 motor ignites. It too has a thrust-vectoring nozzle, assisted by the nitrogen thrusters for roll. After approximately 64 seconds, the third stage burns out.

A fourth stage is sometimes added for a higher altitude, finer altitude accuracy, or more complex maneuvers. The HAPS (Hydrazine Auxiliary Propulsion System) is powered by three restartable, monopropellant hydrazine thrusters. As with dual launches, the HAPS cuts into the fixed volume available for payload. In at least one instance, the spacecraft was built around the HAPS.

Guidance is via a 32-bit computer and an IMU. A GPS receiver gives additional information. Due to the air launch and wing lift, the first-stage flight algorithm is custom-designed. The second- and third-stage trajectories are ballistic, though, and their guidance is derived from a Space Shuttle algorithm."

- WIKI

According to the specs, this rocket costs $11 million per launch. Given a LEO payload of 400 lbs, that is a pretty expensive $25,000 per pound!

2 comments:

DTH Rocket said...

But highly efficient. If you can start your flight at the top of the atmosphere, you don't really have to worry about MaxQ, and you'll get much better use of propellant.

R2K said...

Indeed. If it were not for the small size, the cost efficiency would probably be very good. The 11 million per flight is pretty low. Small rockets dont offer much economy to orbit. That is why we need bigger rockets.